- Algebra for Cryptologists by Alko R. MeijerISBN: 9783319303956Publication Date: 2016This textbook provides an introduction to the mathematics on which modern cryptology is based. It covers not only public key cryptography, the glamorous component of modern cryptology, but also pays considerable attention to secret key cryptography, its workhorse in practice. Modern cryptology has been described as the science of the integrity of information, covering all aspects like confidentiality, authenticity and non-repudiation and also including the protocols required for achieving these aims. In both theory and practice it requires notions and constructions from three major disciplines: computer science, electronic engineering and mathematics. Within mathematics, group theory, the theory of finite fields, and elementary number theory as well as some topics not normally covered in courses in algebra, such as the theory of Boolean functions and Shannon theory, are involved. Although essentially self-contained, a degree of mathematical maturity on the part of the reader is assumed, corresponding to his or her background in computer science or engineering. Algebra for Cryptologists is a textbook for an introductory course in cryptography or an upper undergraduate course in algebra, or for self-study in preparation for postgraduate study in cryptology.
- Explaining Beauty in Mathematics: an Aesthetic Theory of Mathematics by Ulianov MontanoISBN: 9783319034515Publication Date: 2014This book develops a naturalistic aesthetic theory that accounts for aesthetic phenomena in mathematics in the same terms as it accounts for more traditional aesthetic phenomena. Building upon a view advanced by James McAllister, the assertion is that beauty in science does not confine itself to anecdotes or personal idiosyncrasies, but rather that it had played a role in shaping the development of science. Mathematicians often evaluate certain pieces of mathematics using words like beautiful, elegant, or even ugly. Such evaluations are prevalent, however, rigorous investigation of them, of mathematical beauty, is much less common. The volume integrates the basic elements of aesthetics, as it has been developed over the last 200 years, with recent findings in neuropsychology as well as a good knowledge of mathematics. The volume begins with a discussion of the reasons to interpret mathematical beauty in a literal or non-literal fashion, which also serves to survey historical and contemporary approaches to mathematical beauty. The author concludes that literal approaches are much more coherent and fruitful, however, much is yet to be done. In this respect two chapters are devoted to the revision and improvement of McAllister's theory of the role of beauty in science. These antecedents are used as a foundation to formulate a naturalistic aesthetic theory. The central idea of the theory is that aesthetic phenomena should be seen as constituting a complex dynamical system which the author calls the aesthetic as process theory. The theory comprises explications of three central topics: aesthetic experience (in mathematics), aesthetic value and aesthetic judgment. The theory is applied in the final part of the volume and is used to account for the three most salient and often used aesthetic terms often used in mathematics: beautiful, elegant and ugly. This application of the theory serves to illustrate the theory in action, but also to further discuss and develop some details and to showcase the theory's explanatory capabilities.
- Mathematics and Computation by Avi WigdersonISBN: 9780691189130Publication Date: 2019An introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory--the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field's insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography

- Linear Algebra by Michael L. O'LearyISBN: 9781119437444Publication Date: 2021LINEAR ALGEBRA EXPLORE A COMPREHENSIVE INTRODUCTORY TEXT IN LINEAR ALGEBRA WITH COMPELLING SUPPLEMENTARY MATERIALS, INCLUDING A COMPANION WEBSITE AND SOLUTIONS MANUALS Linear Algebra delivers a fulsome exploration of the central concepts in linear algebra, including multidimensional spaces, linear transformations, matrices, matrix algebra, determinants, vector spaces, subspaces, linear independence, basis, inner products, and eigenvectors. While the text provides challenging problems that engage readers in the mathematical theory of linear algebra, it is written in an accessible and simple-to-grasp fashion appropriate for junior undergraduate students. An emphasis on logic, set theory, and functions exists throughout the book, and these topics are introduced early to provide students with a foundation from which to attack the rest of the material in the text. Linear Algebra includes accompanying material in the form of a companion website that features solutions manuals for students and instructors. Finally, the concluding chapter in the book includes discussions of advanced topics like generalized eigenvectors, Schur's Lemma, Jordan canonical form, and quadratic forms. Readers will also benefit from the inclusion of: A thorough introduction to logic and set theory, as well as descriptions of functions and linear transformations An exploration of Euclidean spaces and linear transformations between Euclidean spaces, including vectors, vector algebra, orthogonality, the standard matrix, Gauss-Jordan elimination, inverses, and determinants Discussions of abstract vector spaces, including subspaces, linear independence, dimension, and change of basis A treatment on defining geometries on vector spaces, including the Gram-Schmidt process Perfect for undergraduate students taking their first course in the subject matter, Linear Algebra will also earn a place in the libraries of researchers in computer science or statistics seeking an accessible and practical foundation in linear algebra.
- Mathematical Analysis and Applications by Michael Ruzhansky (Editor); Hemen Dutta (Editor); Ravi P. Agarwal (Editor)ISBN: 9781119414346Publication Date: 2018An authoritative text that presents the current problems, theories, and applications of mathematical analysis research Mathematical Analysis and Applications: Selected Topics offers the theories, methods, and applications of a variety of targeted topics including: operator theory, approximation theory, fixed point theory, stability theory, minimization problems, many-body wave scattering problems, Basel problem, Corona problem, inequalities, generalized normed spaces, variations of functions and sequences, analytic generalizations of the Catalan, Fuss, and Fuss-Catalan Numbers, asymptotically developable functions, convex functions, Gaussian processes, image analysis, and spectral analysis and spectral synthesis. The authors--a noted team of international researchers in the field-- highlight the basic developments for each topic presented and explore the most recent advances made in their area of study. The text is presented in such a way that enables the reader to follow subsequent studies in a burgeoning field of research. This important text: Presents a wide-range of important topics having current research importance and interdisciplinary applications such as game theory, image processing, creation of materials with a desired refraction coefficient, etc. Contains chapters written by a group of esteemed researchers in mathematical analysis Includes problems and research questions in order to enhance understanding of the information provided Offers references that help readers advance to further study Written for researchers, graduate students, educators, and practitioners with an interest in mathematical analysis, Mathematical Analysis and Applications: Selected Topics includes the most recent research from a range of mathematical fields.

- Commutative Algebra by Aron SimisISBN: 9783110616972Publication Date: 2020This unique book on commutative algebra is divided into two parts in order to facilitate its use in several types of courses. The first introductory part covers the basic theory, connections with algebraic geometry, computational aspects, and extensions to module theory. The more advanced second part covers material such as associated primes and primary decomposition, local rings, M-sequences and Cohen-Macaulay modules, and homological methods.
- Discovering Abstract Algebra by John K. OsoinachISBN: 9781470464424Publication Date: 2021Discovering Abstract Algebra takes an Inquiry-Based Learning approach to the subject, leading students to discover for themselves its main themes and techniques. Concepts are introduced conversationally through extensive examples and student investigation before being formally defined. Students will develop skills in carefully making statements and writing proofs, while they simultaneously build a sense of ownership over the ideas and results. The book has been extensively tested and reinforced at points of common student misunderstanding or confusion, and includes a wealth of exercises at a variety of levels. The contents were deliberately organized to follow the recommendations of the MAA's 2015 Curriculum Guide. The book is ideal for a one- or two-semester course in abstract algebra, and will prepare students well for graduate-level study in algebra.
- Linear Algebra by Hugo J. WoerdemanISBN: 9781000345896Publication Date: 2021There is good reason to be excited about Linear Algebra. With the world becoming increasingly digital, Linear Algebra is gaining more and more importance. When we send texts, share video, do internet searches, there are Linear Algebra algorithms in the background that make it work. This concise introduction to Linear Algebra is authored by a leading researcher presents a book that covers all the requisite material for a first course on the topic in a more practical way. The book focuses on the development of the mathematical theory and presents many applications to assist instructors and students to master the material and apply it to their areas of interest, whether it be to further their studies in mathematics, science, engineering, statistics, economics, or other disciplines. Linear Algebra has very appealing features: *It is a solid axiomatic based mathematical theory that is accessible to a large variety of students. *It has a multitude of applications from many different fields, ranging from traditional science and engineering applications to more 'daily life' applications. *It easily allows for numerical experimentation through the use of a variety of readily available software (both commercial and open source). Several suggestions of different software are made. While MATLAB is certainly still a favorite choice, open-source programs such as Sage (especially among algebraists) and the Python libraries are increasingly popular. This text guides the student to try out different programs by providing specific commands.

- Last Updated: Feb 23, 2024 10:33 AM
- URL: https://research.dom.edu/math
- Print Page